ГДЗ по математике 5 класс учебник Бунимович, Дорофеев Параграф 14

Глава 4 ИСПОЛЬЗОВАНИЕ СВОЙСТВ ДЕЙСТВИЙ ПРИ ВЫЧИСЛЕНИЯХ
Параграф 14
УПРАЖНЕНИЯ
ВЫЧИСЛЕНИЕ СУММ

213. Назовите свойства, на основании которых выполнены преобразования, и вычислите сумму:
а)    19 + (11 + 6) = (19 + 11) + 6;
б)    23 + (48 + 27) = 23 + (27 + 48) = (23 + 27) + 48.

214. Найдите сумму:
а)    23 + 47 + 11 + 29;
б)    18 + 15 + 32 + 45;
в)    27 + 36 + 28 + 23 + 14;
г)    276 + 118 + 324;
д)    127 + 32 + 93 + 308;
е)    15 + 45 + 65 + 35 + 40

215. Вычислите удобным способом сумму:
а)    99 + 64;              в) 46 + 197;
б)    198 + 55;            г) 34 + 299.
Образец. Сумму 98 + 37 удобно вычислить, если преобразовать её следующим образом: 98 + 37 = 98 + (2 + 35) = (98 + 2) + 35 = 135.


216. Решите задачу, составив выражение.
а)    Туристы прошли маршрут за 5 дней. В первый день они прошли 15 км, а в каждый следующий день — на 5 км больше, чем в предыдущий. Какова длина маршрута?
б)    Слесарь обработал 6 деталей. Первую деталь он обрабатывал 23 мин, а каждую следующую — на 2 мин быстрее, чем предыдущую. Сколько минут потребовалось для обработки всех деталей?

217. Известно, что b + с = 21.
Чему равно значение выражения:
а) с + (b + 3),
с + (b + 6),
с + (b + 9);
б) (с + 5) + b,
(с + 10) + b,
(с + 15) + b?

218. Вычислите сумму, используя приём Гаусса:
а)    1 + 2 + 3 + ... + 20;    г)    101    + 102 + 103 + ... + 200;
б)    21 + 22 + 23 + ... + 30;    д)    5 +    10 + 15 + ... + 95 + 100;
в)    1 + 2 + 3 + ... + 200;    е)    2 +    4 + 6 + ... + 198 + 200.

ВЫЧИСЛЕНИЕ ПРОИЗВЕДЕНИЙ

219. Назовите свойства, на основании которых выполнены преобразования, и вычислите результат:
а)    15 • (7 • 2) = 15 • (2 • 7) = (15 • 2) • 7;
б)    (4 • 11) • 25 = (11 • 4) • 25 = 11 • (4 • 25).

220. Вычислите:
а)    3 • 5 • 2 • 7;
б)    5 • 5 • 6 • 4;
в)    7 • 2 • 5 • 2 • 5;
г)    2 • 9 • 5 • 5 • 4;
д)    8 • 4 • 125 • 25;
е)    5 • 2 • 2 • 2 • 2 • 5 • 5 • 5 • 6.

221. Известно, что х • у = 12. Чему равно значение выражения:
а)    х • (у • 5);    в) у • (х • 10);
б)    (х • 2) • у,    г) (y • 2) • (х • 3)?
Образец. х • (у • 7) = (х • у) • 7 = 12 • 7 = 84.

222. Вычислите произведение удобным способом:
а) 36 • 25;    б) 25 • 12;    в) 75 • 24;    г) 150 • 42.
Образец. 1) 25 • 24 = 25 • (4 • 6) = (25 • 4) • 6 = 100 • 6 = 600.
2) 75 • 8 = (25 • 3) • (2 • 4) = (25 • 4) • (2 • 3) = 100 • 6 = 600.

223. Вычислите произведение:
а) 75 • 14 • 18;    б) 16 • 125 • 4 • 35.
Подсказка. В качестве образца используйте пример 3 (с. 67).

224. При вычислении произведений помогает знание некоторых результатов.
Например, иногда полезно знать, что 37 • 3 = 111 и 7 • 11 • 13= 1001.
Пользуясь этими равенствами, вычислите:
а) 37 • 15;    б) 74 • 15;    в) 3 • 7 • 11 • 13 • 37 .

225. 1) Вычислим значение степени 1202, воспользовавшись сочетательным свойством умножения:
1202 = (12 • 10)2 = (12 • 10) • (12 • 10) = (12 • 12) • (10 • 10) = 122 • 100 = 14400.
Так как 1202= 122 • 100 = 14400, то найти значение степени 1202 можно так: возвести в квадрат число 12 и приписать к результату два нуля.
С помощью такого приёма вычислите:
а) 802; б) 1102; в) 1702; г) 2502. (Используйте таблицу квадратов.)
2)    Найдите самый короткий способ нахождения значения степени 6002.
Вычислите, воспользовавшись найденным приёмом:
а) 12002; б) 15002.

ЗАДАЧА-ИССЛЕДОВАНИЕ
226. 1) Проверьте равенства: 1 + 3 = 22, 1 + 3 + 5 = 32, 1 + 3 + 5+ 7 = 42.
Эти равенства подсказывают приём вычисления суммы последовательных нечётных чисел. В чём состоит этот приём? Запишите следующее равенство и проверьте себя с помощью вычислений.
2)    Пользуясь рассмотренным приёмом, найдите:
а)    сумму первых десяти нечётных чисел;
б)    сумму всех нечётных чисел от 1 до 99.

 

07.09.2021, 10:43
Категория: Математика
Загрузок: 0 | Рейтинг: 0.0/0
Учебники которые стоит прочитать:
Всего комментариев: 0